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1 INTRODUCTION TO MULTIVARIABLE FUNCTIONS

1 Introduction to Multivariable Functions

A function f(x, y) is a rule that assigns to every element x a unique element y, and is
denoted by f : x → y, where x is the domain of f and y is the codomain of f

Example

f : N → R, f(x) = 2x

In this case, every value of f is even and does not take the whole codomain

We introduce the range, a subset of the codomain, range(f) ⊆ codomain(f)

1.1 Properties of functions

One-one/Injective

f : X → Y if x1, x2 ∈ X, f(x1) = f(x2)

Onto/Surjective

f : X → Y is onto if for every y ∈ Y , there exists some x ∈ X such that f(x) = y

In this case, codomain = range

Bijective

if f : x → y is both one-one and onto, it is bijective

Scalar-valued

Consider f : x → y where x ⊆ R and y ⊆ R, n,m ∈ N

When the codomain is just R, the function is called a Scalar-valued function

Example

f : R2 → R where f(x, y) =
√

x2 + y2

This returns the length of a 2D vector, which is a scalar

Vector-valued

A vector-valued function has codomain Rn where n > 1, n ∈ N

Example

f : R → R2, f(x) = (cosx, sin x)

1.2 Identify domain and codomain

Examples

f(x) = ln x, domain = (0,∞), codomain = R

f(x) =
√
2− x, domain = (−∞, 2], codomain = (0,∞)

f(x, y) = (
√

1− x2 − y2, ln(y + 1), x2 + y2)

1: x2 + y2 = 1 2: y > −1
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1 INTRODUCTION TO MULTIVARIABLE FUNCTIONS

domain: {(x, y) ∈ R2 : x2 + y2 ≤ 1, y > −1}
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2 LEVEL CURVES AND CONTOURS

2 Level Curves and Contours

Level Curve

Given a scalar-valued function, the level curve at height c is the curve in R2 s.t. f(x, y) = c

Or, the level curve at height c = {(x, y) ∈ R2|f(x, y) = c}

Contour

The contour curve at height c is the collection of points (x, y, z) s.t. z = f(x, y) = c

Or, {(x, y, z) ∈ R3|z = f(x, y) = c}

The projection of the contour is the level curve

Section

A section of a surface by a place is just the intersection of the surface with that plane

5



3 LIMITS OF A FUNCTION

3 Limits of a function

General form: f : R → R

lim
x→a

f(x) = L,∴ f(x) tends to L as x tends to a

3.1 L’Hospital’s Rule

If we have a case where we are evaluating a limit and we get 0
0

or ∞
∞ , we can use lim

x→a

f ′(x)
g′(x)

Why?: The ratio f(x)
g(x)

near a depends not only on the values of f and g, but on how fast
they approach 0 or ∞

3.2 Limits in two variables

Let f : R2 → R, lim
(x,y)→(a,b)

f(x, y)

The Line y = mx trick

All paths approaching point (e.g. (0, 0)) must give the same value

A simple test path is a straight line mx through the origin, and plug f(x, y) → f(x,mx)

If the result depends on m, the limit does not exist

Does Exist Example

lim
(x,mx)→(0,0)

x2

x2 + y4

lim
x→0

x2

x2 +m4x4

lim
x→0

1

1 +m4x2
= 1 ∴ limit exists

Does Not Exist Example

lim
(x,y)→(0,0)

1

1 +m2
=

x2

x2 +m2x2
=

1

1 +m2
∴ limit does not exist

3.3 Epsilon-delta definition of a limit

lim
x→a

f(x) = L means ∀ε > 0, ∃δ > 0 s.t. 0 < |x− a| < δ ⇒ |f(x)− L| < ε

Example: we know that lim
x→4

√
2x+ 1 = 3 by plugging in 4 into the continuous function

To prove this, ∀ε > 0, ∃δ > 0 s.t. 0 < |x− 4| < δ ⇒ |
√
2x+ 1− 3| < δ

6



3 LIMITS OF A FUNCTION

If x is near 4, of a distance less than δ, then the corresponding value of the function is
near the limit L = 3, of a distance ε

3.3.1 General solution process

Proof: Given ε > 0 We want to find δ > 0 such that if 0 < ||x−a|| < δ, then |f(x)−L| < ε

Start with |f(x) − L| and manipulate it to relate it to ||x − a|| For instance, show:
|f(x)− L| ≤ c||x− a|| for some c > 0

Choose δ = ε
c

and show that |f(x)− L| < c||x− a|| < cδ = ε

Therefore, lim
x→a

f(x) = L

Triangle Inequality

It says: |a+ b| ≤ |a|+ |b|

Order Trick

Ex: lim
(x,y)→(0,0)

3xy2

x2+y2
= 0, lim is likely to exist when order is ≥ 1, here it is 1

Simplify Trick

We can: 3|x|y2
x2+y2

≤ 3|x|y2
y2

= 3|x|

We can also: |x| ≤
√

x2 + y2

Linear combination of coordinate differences

|a(x− a) + b(y − b)| ≤ |a||x− a|+ |b||y − b| ≤ (|a|+ |b|)∥x− a∥.
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3 LIMITS OF A FUNCTION

3.4 When to use either strategy

We use the epsilon-delta proof to rigorously prove that a limit exists (or equals some
value)

We take the limit along lines, parabolas, or curves to test whether a limit exists, or to
guess its value. It is useful when you are not sure if the limit exists.

3.5 ε− δ for vector-valued functions

Let F : U(⊆ Rn) → Rm, a⃗ ∈ U

We write lim
x⃗→a⃗

F (x⃗) = L⃗, ∀ε > 0, ∃δ > 0 s.t. ||F (x⃗)− L⃗|| < ε if ||x⃗− a⃗|| < δ

Ex: does lim
(x,y)→(0,0)

( 3xy2

x2+y2
, ex+cos y
x2+y2+1

) exist?

We know that the first component does. For the second component, both the numerator
and the denominator are continuous at (0, 0), thus we can plug in that point and get that
the limit approaches 2
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4 CONTINUITY AND ITS PROPERTIES

4 Continuity and its properties

4.1 Continuity of single variable functions

Let f : A → R, a ∈ A. f is continuous if (1) lim
x→a

f(x) exists and (2) lim
x→a

f(x) = f(a)

4.2 Continuity of multivariable functions

Let f : U(⊆ Rn → R and a⃗ ∈ U . f is continuous at a⃗ if (1) lim
x⃗→a⃗

F (x⃗) exists and (2)

lim
x⃗→z⃗

F (x⃗) = F (⃗a)

4.3 Properties of continuity (scalar- and vector-valued functions)

Suppose that f and g are continuous at a⃗ ∈ U

1. f + g is continuous at a⃗
2. f ∗ g is continuous at a⃗
3. f

g
is continuous at a⃗ if g(⃗a) ̸= 0

Further:

1. lim
x⃗→a⃗

(f + g)(x⃗) = f (⃗a) + g(⃗a)

2. lim
x⃗→a⃗

(f ∗ g)(x) = f (⃗a)g(⃗a)

3. lim
x⃗→a⃗

(
f
g

)
(x⃗) = f(a⃗)

g(a⃗)
if g(⃗a) ̸= 0

Example:

f(x) =


3xy2

x2+y2
, (x, y) ̸= (0, 0),

a, (x, y) = (0, 0).
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4 CONTINUITY AND ITS PROPERTIES

For which values of a is F continuous?

We know that the first component is continuous everywhere, except possible at (0, 0)

For continuity at (0, 0), we need the limit of F at (0, 0) = a, which is equivalent to saying
that the continuous function F (0, 0) = a

That means we need to compute the first term’s limit while approaching (0, 0), which is
= 0

∴ a = 0

4.4 Composition of two continuous functions

If: 1. g is continuous at x = a, and 2. f is continuous at g(a), then f ◦ g is continuous at
a, where f(g(x)) → f(g(a))

10



5 DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

5 Differentiation of multivariable functions

5.1 The derivative

f is differentiable at c if lim
h→c

f(x+h)−f(c)
h

exists. If the limit exists, then it is denoted by

f ′(x) = lim
h→0

f(x+h)−f(h)
h

, where f ′(x) captures the rate of change of f near c

If f(c) exists, we can draw a tangent line at c, and its slope is f ′(c)

5.2 Notation

An open ball in Rn with centre at a⃗ ∈ Rn and radius r : B(⃗a, r). The ball is open,
meaning that the boundary points are not included

Definition: A point a⃗ is an interior point of a set A if there exists an open ball Bε(⃗a),
for some ε > 0, such that Bε(⃗a) ⊆ A. So, the open ball lies entirely inside the set, without
touching its complement

Definition: A boundary point is a point a⃗ such that every open ball Bε(⃗a), no matter
how small ε > 0 is, intersects the function and its complement (not the function)

Essentially, an open ball is all points strictly inside a certain radius form the centre, not
including the edge. The interior points are inside the open ball, and boundary points are
on the edge.

A set U ⊆ Rn is called open if every point of U is an interior point

5.3 Partial Differentiation

f is partially differentiable wrt x at (a, b) if lim
x→a

f(a+h,h)−f(a,h)
h

exists. If exists: ∂f
∂x
(a, b) or

fx(a, b)
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6 PARTIAL DIFFERENTIATION (CONT.)

6 Partial Differentiation (cont.)

6.1 Tangent plane visualized

6.2 Directional derivative

The directional derivative of a function f : Rn → R at a point p in the direction of a
vector v⃗ is the rate at which f changes at p as you move in the direction of v⃗

Dv⃗f(p) = ∇f(p) · v⃗

For vector valued functions, we can compute using the Jacobian Dv⃗f(p) = DH(p) · v⃗

Definition: The directional derivative of f at a⃗ = (a, b) in the direction of v⃗ is given by
Dv⃗f (⃗a) = lim

h→0

f(a⃗+hv⃗)−f(a⃗)
h

, if it exists

Example: let f(x, y) = x2y − 3x, Dv⃗f(0, 0) =? where v⃗ =
(

1√
2
, −1√

2

)
Dv⃗f(0, 0) = lim

h→0

f(0,0)+h
(

1√
2
,− 1√

2

)
−f(0,0)

h

Simplify, then plug in h

= − 3√
2

6.3 Multivariable differentiability at (a, b)

Definition: f : R2 → R is differentiable at (a, b) if ∃h(x, y) = f(a, b) + fx(a, b) + fy(a, b)

1. fx(a, b) and fy(a, b) exists
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6 PARTIAL DIFFERENTIATION (CONT.)

2. ∃Rf ′(a) s.t. lim
h→0

f(x)−h(x,y)
|x−a| = 0, where h(x, y) is the equation of the tangent plane

(or line) f(a, b) + fx(a, b)(x− a) + fy(a, b))y − b

How?

Single variable differentiability is defined by f ′(a) = lim
x→a

f(x)−f(a)
x−a

We can rearrange to emphasize linear approximation: lim
x→a

f(x)−[f(a)+f ′(a)(x−a)]
x−a

= 0

This is saying that the function is differentiable at a if it can be approximated by th linear
function h(x, y) with error smaller than order |x− a|

Multivariable differentiability is now as follows lim
(x,y)→(a,b)

f(x,y)−h(x,y)
||((x,y)−(a,b)|| = 0

13



7 GRADIENTS, MORE DERIVATIVES, AND THE JACOBIAN

7 Gradients, More Derivatives, and the Jacobian

7.1 Gradient

The gradient of a scalar function is a vector that collects all the partial derivatives of f
with respect to each variable:

∇f = (fx1 , fx2 , . . . , fxn)

At a specific point, the gradient becomes:

∇f (⃗a) = (fx1 (⃗a), . . . , fxn (⃗a))

This vector points in the direction of the steepest increase of f and its magnitude gives
the rate of increase

The difference vector:

x⃗− a⃗ = (x1 − a1, . . . , xn − an)

The linear approximation of f near a⃗ can be written as:

∇f (⃗a)(x⃗− a⃗) = fx1 (⃗a)(x1 − a1) + · · ·+ fxn (⃗a)(xn − an)

Example:

Let f(x, y) = xy2 + exy, find the gradient at (0, 0)

fx = y2 + yexy, fy = 2yx+ xexy

∇f = (fx, fy) = (y2 + yexy, 2xy + xexy) ∇f(0, 0) = (0, 0)

Dot product of two vectors

If a⃗ = (a1, . . . , an) and b⃗ = (b1, . . . , bn), then a⃗ · b⃗ = a1b1 + · · ·+ anbn

7.2 Derivative Matrix

Let U ⊆ Rn and f : U(⊆ Rn) → Rm

f = (f1, f2, . . . , fm)

Let f(x, y) = (x2, x+ y)

f1(x) = x2, f2(x) = x+ y

Df =

∇f1
∇f2
. . .
∇fm

=


∂f1
∂x1

, ∂f1
∂x2

, . . . , ∂f1
∂xn

∂f2
∂x1

, ∂f2
∂x2

, . . . , ∂f2
∂xn

. . .
∂fm
∂x1

, ∂fm
∂x2

, . . . , ∂fm
∂xn


This matrix is called the matrix of partial derivatives of f , otherwise called the Derivative
Matrix or the Jacobian Matrix. Essentially, the derivative is a linear map, and in
coordinates it is built from the partial derivatives

Example:

Let f(x, y) = (xy, y2 sin x, x3ey), find the derivative matrix

14



7 GRADIENTS, MORE DERIVATIVES, AND THE JACOBIAN

Df =
∇f1
∇f2
∇f3

=
y, x

y2 cos x, 2y sin x
3x2ey, x3ey

7.3 Differentiability in higher dimensions f : U → Rm

f is differentiable if: - Df (⃗a) exists - Tangent plane h : Rn → Rm, h(x⃗) = f (⃗a) +

Df (⃗a)(x⃗− a⃗), where Df (⃗a)(x⃗− a⃗) is a matrix multiplication, satisfies lim
x⃗→a⃗

||f(x⃗)−h(x⃗)||
||x⃗−a⃗|| = 0,

which is hard to use

This is why we introduce the following theorems:

7.3.1 Theorems for higher-dimension differentiability

Theorem 1:

If f = (f1, f2, . . . , fm), then f is differentiable at a⃗ ⇔ f1, f2, . . . , fm is differentiable at a⃗

Theorem 2:

If f = (f1, f2, . . . , fm) and all partials ∂fi
∂xj

, as i, j, . . . , im, jm, are continuous then f is
differentiable

Example:

f(x, y) = (x2y, ey sin x) is differentiable because all of its partial derivatives are continuous

Theorem 3:

If f is differentiable at a⃗, then directional derivatives can be computed using: Dv⃗f (⃗a) =
∇f (⃗a) · v⃗

If f is differentiable at a⃗, then Dv⃗f (⃗a) = Df (⃗a)v⃗ where Df (⃗a)v⃗ is a matrix multiplication

Example:

f(x, y) = (exy, x2y), find rate of change of f at (1, 2) in direction v⃗ =
(
−1

2
,
√
3
2

)
Df =

exy, ex

2xy, x2, Df(1, 2) =
2e, e
4, 1

Df(1, 2)v⃗ =
2e, e
4, 1

·
−1

2√
3
2

=
e+

√
3
2
e

2 +
√
3
2

7.4 Properties of Differentiability

Let F : Rn → R, G : Rn → R be differentiable at a⃗

• F +G is differentiable at a⃗

• F ·G is differentiable at a⃗

• If G(⃗a) ̸= 0, F
G

is differentiable at a⃗

• If f is differentiable at a and g is differentiable at f(a), then g ◦ f is differentiable
at a and d

dx
(g ◦ f) = g′(f(a)) ∗ f ′(a)
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7 GRADIENTS, MORE DERIVATIVES, AND THE JACOBIAN

• The graph of a function is the set {(x, y, f(x, y)) ∈ R3 : (x, y) ∈ domain}

• If fx, fy, fxy, fyx are continuous, then fxy = fyx

16



8 DIFFERENTIABILITY IN HIGHER DIMENSION

8 Differentiability in higher dimension

8.1 Chain Rule in Composition

D(G ◦ F )(⃗a) = DG(F (⃗a))DF (⃗a), where the RHS is a matrix multiplication

Example: F (x, y) = (x2y, e3x) and G(x, y) = (x+ y, xy, sin(2x− y))

Find: D(G ◦ F )(1, 1), where (1, 1) = (⃗a)

Apply the chain rule equation and get = DG(1, e3)DF (1, 1)

DF =
2xy x2

3e3x 0
and DG =

1 1
y x

2 cos(2x− y) − cos(2x− y)

DF (1, 1) =
2 1
3e3 0

and DG(1, e3) =
1 1
e3 1

2 cos(2− e3) − cos(2− e3)

Now, D(G ◦ F )(1, 1) =
2 + 3e3 1
5e3 e3

4 cos(2− e3)− 3e3 cos(2− e3) 2 cos(2− e3)

8.2 Polar Coordinate Examples

x = r cos θ, y = r sin θ

DH(r, θ) = DG(r cos θ, r sin θ)DF (r, θ)

DH(r, θ) = ∂G
∂x

cos θ + ∂G
∂y

sin θ − ∂G
∂x
r sin θ + ∂G

∂y
cos θ

Example: Find DH

With a given r, θ, ∂G
∂x
, ∂G
∂y

, we can find DH(r, θ) through the chain rule

Example: Find DG

With a given r, θ, ∂H
∂x

, ∂H
∂θ

, we can find DG with:
[
∂G
∂x
, ∂G
∂y

]
=

[
∂H
∂x

, ∂H
∂y

]
·DF−1
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9 APPLICATIONS OF THE GRADIENT

9 Applications of the Gradient

9.1 Gradients and level curves

If we have a level curve for the function x2+y2, so f(x, y) = c = x2+y2, then the gradient
∇F is always perpendicular to the tangent plane to the level curve

Thus, the equation of the tangent plane is given by ∇F · (x⃗− a⃗) = 0, ∀x⃗ on tangent plane,
where a⃗ is the fixed reference vector

Example: Find equation of tangent plane given the function and the reference vector

f(x, y) = x2y + yex at (0, 1,−1)

Isolate and get the gradient: f(x, y, z) = z − x2y + yex ∇F = (−2xy + yex,−x2 + ex, 1)
∇F (0, 1,−1) = (1, 1, 1)

(1, 1, 1) · (x− 0, y − 1, z + 1) = 0 ∴ x+ y + z = 0

9.2 Magnitude of ∇F

Consider the directional derivative Dv⃗f (⃗a) = ∇f (⃗a) · v⃗

In what direction does the function increase the most?

If θ is the angle between v⃗ and teh gradient vector ∇f (⃗a), then we have:

Dv⃗f (⃗a) = ||∇f(a)||||v⃗|| cos θ = ||∇f (⃗a)|| cos θ because the magnitude of the unit vector
v⃗ = 1

Thus, the max ROC is at θ = 0,= ||∇f (⃗a)||

The min ROC is at θ = π,= −||∇f (⃗a)|| and is opposite to ∇f (⃗a)

9.2.1 Example

Given f(x, y) = 3 sin xy, a⃗ = (1, π) find: 1. direction of max ROC, value of ROC at f (⃗a),
and direction of tangent to the level curve at a⃗

1. Get gradient, plug in point, ∴ max ROC is in the direction of gradient

2. Get magnitude of gradient at point, ∴ this is the max ROC

3. ∇f is perpendicular to tangent line to the level curve at (1, π). Find v⃗ ⊥ (−3π,−3)

18



9 APPLICATIONS OF THE GRADIENT

Method: change values in vector, change sign of 1

v⃗1 = (3,−3π) SOLVE USING CHAT

19



10 CONSERVATIVE VECTOR FIELDS

10 Conservative Vector Fields

A vector field is conservative if ∃f : U → R such that F = ∇f

The function f is called a potential function of F

Example: F (x, y) = (2x, 2y)

Thus, if F = ∇f and the potential function f(x, y) = x2 + y2, then F (x, y) is conservative
and f is the potential function

10.1 Test for conservative

Function G(x, y, z) is conservative if

10.2 Reconstruct a potential function given its gradient

Find ∇f = (fx, fy, fz) = g = (g1, g2, g3)

1. Integrate g1 wrt x

f(x, y, z) =
∫
g1dx+ h(y, z)

2. Differentiate wrt y, set equal to g2, solve for h(y, z) by integrating wrt y and get a
k(z) term

3. Differentiate wrt z, set equal to g3, solve for k(z) up to constant C

4. Assemble final f(x, y, z) + C

20



11 PARAMETRIC EQUATIONS AND CLASS

11 Parametric Equations and Class

Definition of Path: a continuous function f : I → Rn where I ∈ R is on the interval
[a, b]

11.1 Parametrization

f(a) = starting point of f , f(b) = end point of f

The Im of the path, denoted by f(I) is called the curve in R2 and f is a parametrization
of C

Important result: Parametrization is not unique

f(t) = (cos t, sin t) and g(t) = (t,
√
1− t2) have the same curve Im(f) = Im(g)

11.2 Class

Let f : I → Rn be a path, say f is of class C(k), k ∈ N, and f is differentiable k−times
and derivatives are continuous

Example: y2 = x3

Parametrized: f(t) = (t, t3/2) → f ′(t) =
(
1, 3

2
·
√
t
)
→ f ′′ =

(
0, 3

4
· 1√

t

)
, which is not

defined at t = 0

∴ f is of class C1 and not C2
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12 ARC LENGTH, DIVERGENCE AND CURL

12 Arc Length, Divergence and Curl

12.1 Arc Length

Arc length from a to b, with f : I → Rm, and c is a curve in f :

L(f) =
∫ b

a
||f ′(t)|| dx

Method: get parametrization f(t), get speed, then integrate w.r.t. bounds

12.2 Divergence of a vector field

Denoted by Div(f) = ∇ · F⃗ = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
, it can measure net mass flow or flux

density

If Div(f) > 0, consider the field as a source, flowing out If Div(f) < 0, consider the field
as a sink, flows in

12.3 Curl of a vector field

Let F = (F1, F2, F3) be a differentiable vector field in R3

Curl(F ) = ∇× F =

∣∣∣∣∣∣
i −j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
Curl(F ) =

(
∂F3

∂y
− ∂F2

∂x
,−∂F3

∂x
+ ∂F1

∂z
, ∂F2

∂x
− ∂F1

∂y

)
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13 GRADIENT, DIVERGENCE AND CURL (CONT.)

13 Gradient, Divergence and Curl (cont.)

Scalar field: f(x, y, z) Vector field:
(

∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
∇f inputs a scalar field and outputs a vector field

∇ · F inputs a vector field F⃗ and outputs a scalar field

∇× F inputs a vector field F⃗ and outputs a vector field

13.1 Identities

The curl of a gradient, ∇× (∇f) = 0⃗, gradient fields are irrotational

The divergence of a curl, ∇ · (∇× F⃗ ) = 0, curl fields have no net source

The divergence of a gradient, ∇ · (∇f) is the Laplacian, ∆f , a scalar field

The curl of a divergence, ∇× (∇ · F⃗ ) is undefined, divergence can’t input a scalar field

The gradient of a curl, ∇(∇× F⃗ ) is undefined, gradient can’t input a vector field

The curl of a curl, ∇× (∇× (F )) = ∇(Div(F ))−∇2F , and is defined in R3

G is conservative if ∃f : U → R such that G = ∇F , where F is the potential function

The dot product of two vector fields, e.g. F ·G, is a scalar field defined by R3 → R

If G : U(⊆ R2) → R2, so (G1, G2). If Curl(G) = 0, then G is conservative

If G : U(⊆ R3) → R3, if G is the curl of some vector field, then div=0
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14 SPECIAL DOMAINS AND CONSERVATIVE FUNCTIONS

14 Special Domains and Conservative Functions

Let U ⊆ R3 be an open set

U is simply connected if:

1. U is connected (any two points can be connected by a path)

2. Every loop inside U can be shrunk continuously to a point inside U

If we let U ⊆ Rn be a simply connected open set, and F : U → Rn be a vector field, then
f is conservative if and only if Curl(f) = 0

Example:

Let G(x, y, z) = (y2, 2xy+z, y− sin z), is G conservative? If so, find the potential function
f such that G = ∇f

Domain(G) = R3, simply connected, and Curl(G) = (1− 1, 0, 0− 2y − 2y) = 0, thus G is
conservative

Let (G1, G2, G3) = (Fx, Fy, Fz)

Fx = y2 ⇒
∫
Fxdx = xy2 + g(y, z)

Fy = 2xy + z ⇒ ∂F (x,y,z)
∂y

= 2xy + ∂g(y,z)
∂y

= 2xy + z ⇒ ∂g(y,z)
∂y

= z

g(y, z) =
∫
zdy = yz + h(z) ⇒ F (x, y, z) = xy2 + yz + h(z)

Fz = y − sin z ⇒ ∂F (x,y,z)
∂z

= y + dh(z)
dz

= y − sin z ⇒ dh(z)
dz

= − sin z

h(z) =
∫
− sin zdz = cos z + C

∴ F (x, y, z) = xy2 + yz + cos z
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15 RIEMANN SUMS

15 Riemann Sums

15.1 Single-variable Integration

Let f [a, b] → R be a function∫ b

a
f(x) dx represents the area under the curve

We partition [a, b] into subintervals for Riemann sums

Area under f ≈ sum of area of rectangles, A = f(ξi)δxi,∆xi = (ai − ai−1), ξ ∈ [ai−1, ai]

A is integrable on [a, b] if lim
∆xi→0

∫
Σn

i=1f(ξi)∆xi exists

15.2 How to integrate functions of two variables

Let f : [a, b]× [c, d] → R

∆xi = ai − ai−1,∆yj = cj − cj−1

V of partitions = lbh = f(ξ)∆xi∆yj

V ol(A) ≈ Σn
i=1Σ

m
j=1f(ξi)∆xi∆yj

f is integrable over [a, b]× [c, d] if lim
∆xi and ∆yj→0

Σn
i=1Σ

m
j=1f(ξi)∆xi∆yj exists, and is denoted

by
∫∫

[a,b]×[c,d]
fdA

If f is continuous over [a, b]× [c, d], then it is integrable

Fubini’s Theorem: let f : [a, b]× [c, d] → R be continuous

Then,
∫∫

[a,b]×[c,d]
=

∫ d

c

∫ b

a
f(x, y) dx dy and can be reversed
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16 CHEAT SHEET

16 Cheat Sheet

16.1 Delta-Epsilon

The condition 0 <
√

(x− a)2 + (y − b)2 < δ means our input point is inside the
δ−neighbourhood of (a, b)

The proof then shows that whenever the input point is that close to (a, b), the function
value f(x, y) lies in the ε−neighbourhood of the limit L: |f(x, y)− L| < ε

Proof: Given ε > 0 We want to find δ > 0 such that if 0 < ||x−a|| < δ, then |f(x)−L| < ε

Start with |f(x) − L| and manipulate it to relate it to ||x − a|| For instance, show:
|f(x)− L| ≤ c||x− a|| for some c > 0

Choose δ = ε
c

and show that |f(x)− L| < c||x− a|| < cδ = ε

Therefore, lim
x→a

f(x) = L

16.2 Disproving a Multivariable Limit

1. Prove with direct substitution

If you get a determinate value (like 5, 0, or ∞) and the function is built from continuous
functions, you’re done

If you get an indeterminate form like 0/0, proceed with next steps.

2. Disprove with two-path test

For a limit approaching (0, 0), common paths to test include: axis paths (along x, let y = 0,
vice-versa), linear paths y = mx and the limit d/n exist if it depends on m, parabolic
paths

3. Disprove with polar coordinates x = r cos θ, y = r sin θ

16.3 Partial Derivative

Definition of partial derivatives at a point
∂F
∂x
(0, 0) = lim

h→0

F (h,0)−F (0,0)
h

16.4 Derivative Matrix

D(G ◦ F )(⃗a) = DG(F (⃗a))DF (⃗a)

Df =

∇f1
∇f2
. . .
∇fm

=


∂f1
∂x1

, ∂f1
∂x2

, . . . , ∂f1
∂xn

∂f2
∂x1

, ∂f2
∂x2

, . . . , ∂f2
∂xn

. . .
∂fm
∂x1

, ∂fm
∂x2

, . . . , ∂fm
∂xn


Let A = [a, b] and B =

[
e f
g h

]
, then AB =

[
ae+ bg af + bh

]
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16 CHEAT SHEET

Let A be of size m×m and B of size p× q, then C = A×B has dimensions m× q

16.5 Divergence and Curl

The divergence of F denoted by ∇ · F is R3 → R, measures the net rate of flow outward
from a point, and is ∇ · F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

The curl of F denoted by ∇× F is R3 → R3, measures the tendency to rotate or swirl
around a point, and is ∇× F =< ∂F3

∂y
− ∂F2

∂z
, ∂F1

∂z
− ∂F3

∂x
, ∂F2

∂x
− ∂F1

∂y
>

The gradient of f denoted by ∇f is R3 → R3 points in the direction of greatest increase
of f , and its magnitude is the rate of increase, and is ∇f =< ∂f

∂x
, ∂f
∂y
, ∂f
∂z

>

∇ · (∇× F ) = 0, or in words, the divergence of the curl of any vector field F is 0
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